为生成模型设计域和模型不合稳定的评估指标是一个重要且尚未解决的问题。大多数仅根据图像合成设置量身定制的指标表现出有限的能力,可以诊断跨更广泛的应用域的生成模型的不同模式。在本文中,我们介绍了三维评估度量标准($ \ alpha $ - precision,$ \ beta $ - recall,autherticity),其特征是任何生成模型中任何生成模型的保真度,多样性和概括性的表征。我们的度量标准通过精确重新分析统一统计差异度量,从而实现了模型保真度和多样性的样本和分布级诊断。我们将概括作为额外的独立维度(对忠诚度多样性权衡取舍),该概括量化了模型复制培训数据的程度 - 在对敏感数据建模具有隐私要求的敏感数据时,这是至关重要的绩效指标。这三个度量组件对应于(可解释的)概率数量,并通过样品级二进制分类估算。我们指标的样本级别的性质激发了一种新颖的用例,我们称之为模型审核,其中我们判断(Black-Box)模型生成的单个样品的质量,丢弃了低质量样品,从而改善了整体模型性能事后方式。
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
The BLOOM model is a large open-source multilingual language model capable of zero-shot learning, but its pretraining was limited to 46 languages. To improve its zero-shot performance on unseen languages, it is desirable to adapt BLOOM, but previous works have only explored adapting small language models. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at \url{https://github.com/bigscience-workshop/multilingual-modeling/}.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Accurate recognition of food items along with quality assessment is of paramount importance in the agricultural industry. Such automated systems can speed up the wheel of the food processing sector and save tons of manual labor. In this connection, the recent advancement of Deep learning-based architectures has introduced a wide variety of solutions offering remarkable performance in several classification tasks. In this work, we have exploited the concept of Densely Connected Convolutional Neural Networks (DenseNets) for fruit quality assessment. The feature propagation towards the deeper layers has enabled the network to tackle the vanishing gradient problems and ensured the reuse of features to learn meaningful insights. Evaluating on a dataset of 19,526 images containing six fruits having three quality grades for each, the proposed pipeline achieved a remarkable accuracy of 99.67%. The robustness of the model was further tested for fruit classification and quality assessment tasks where the model produced a similar performance, which makes it suitable for real-life applications.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
音频是人类交流最常用的方式之一,但与此同时,它很容易被欺骗人们滥用。随着AI的革命,几乎每个人都可以访问相关技术,从而使罪犯犯罪和伪造变得简单。在这项工作中,我们引入了一种深度学习方法,以开发一种分类器,该分类器将盲目地将输入音频分类为真实或模仿。提出的模型接受了从大型音频数据集提取的一组重要功能的培训,以获取分类器,该分类器已在不同音频的相同功能上进行了测试。为这项工作创建了两个数据集;所有英语数据集和混合数据集(阿拉伯语和英语)。这些数据集已通过GitHub提供,可在https://github.com/sass7/dataset上使用研究社区。为了进行比较,还通过人类检查对音频进行了分类,主题是母语人士。随之而来的结果很有趣,并且表现出强大的精度。
translated by 谷歌翻译
大多数人工智能(AI)研究都集中在高收入国家,其中成像数据,IT基础设施和临床专业知识丰富。但是,在需要医学成像的有限资源环境中取得了较慢的进步。例如,在撒哈拉以南非洲,由于获得产前筛查的机会有限,围产期死亡率的率很高。在这些国家,可以实施AI模型,以帮助临床医生获得胎儿超声平面以诊断胎儿异常。到目前为止,已经提出了深度学习模型来识别标准的胎儿平面,但是没有证据表明它们能够概括获得高端超声设备和数据的中心。这项工作研究了不同的策略,以减少在高资源临床中心训练并转移到新的低资源中心的胎儿平面分类模型的域转移效果。为此,首先在丹麦的一个新中心对1,008例患者的新中心进行评估,接受了1,008名患者的新中心,后来对五个非洲中心(埃及,阿尔及利亚,乌干达,加纳和马拉维进行了相同的表现),首先在丹麦的一个新中心进行评估。 )每个患者有25名。结果表明,转移学习方法可以是将小型非洲样本与发达国家现有的大规模数据库相结合的解决方案。特别是,该模型可以通过将召回率提高到0.92 \ pm 0.04 $,同时又可以维持高精度。该框架显示了在临床中心构建可概括的新AI模型的希望,该模型在具有挑战性和异质条件下获得的数据有限,并呼吁进行进一步的研究,以开发用于资源较少的国家 /地区的AI可用性的新解决方案。
translated by 谷歌翻译
联合学习(FL)是AI的新出现的分支,它有助于边缘设备进行协作训练全球机器学习模型,而无需集中数据并默认使用隐私。但是,尽管进步显着,但这种范式面临着各种挑战。具体而言,在大规模部署中,客户异质性是影响培训质量(例如准确性,公平性和时间)的规范。此外,这些电池约束设备的能源消耗在很大程度上尚未探索,这是FL的广泛采用的限制。为了解决这个问题,我们开发了EAFL,这是一种能源感知的FL选择方法,该方法考虑了能源消耗以最大程度地提高异质目标设备的参与。 \ Scheme是一种功能感知的培训算法,该算法与电池电量更高的挑选客户结合使用,并具有最大化系统效率的能力。我们的设计共同最大程度地减少了临界时间,并最大程度地提高了其余的电池电池水平。 \方案将测试模型的精度提高了高达85 \%,并将客户的辍学率降低了2.45 $ \ times $。
translated by 谷歌翻译